La replicación del ADN produce una copia de sí mismo por medio de enzimas que además de ser muy exactas poseen un sistema de reparación de errores. El mecanismo de replicación es esencialmente el mismo en todas las células. Luego del descubrimiento de la estructura del ADN, en 1953, dos biólogos moleculares americanos, Matthew Stanley Meselson y Frank Stahl demostraron que este se replica de una manera semiconservativa, es decir que la nueva cadena se sintetiza utilizando una de las hebras preexistentes como molde. Las moléculas de ADN “hijas” están formadas por una cadena nueva y una original que sirve como molde.
Para que esto ocurra, la célula debe “abrir” la doble cadena de ADN en una secuencia específica denominada origen de replicación (en bacterias) o secuencia de replicación autónoma (en eucariotas) y copiar cada cadena. En la replicación participan varias enzimas. Las ADN polimerasas sintetizan una nueva cadena de ADN. Para esto utilizan como molde una de las hebras y un segmento corto de ADN, al que se le agregan los nuevos nucleótidos. Este segmento funciona como cebador (primer, en inglés). La ADN polimerasa agrega nucleótidos al extremo 3’ de la cadena en crecimiento.
4.1 Replicación del genoma procariótico
La replicación en bacterias se ajusta al modelo semiconservativo. En las bacterias existe un solo origen de replicación, denominado Ori C y, a partir de este único punto de origen, la replicación progresa en dos direcciones, de manera que existen dos puntos de crecimiento (PC) u horquillas de replicación. Cairns en 1963, llevó a cabo otro experimento en la bacteria E. coli que además de demostrar que la replicación de su ADN se ajustaba al modelo Semiconservativo propuesto por Watson y Crick (1953), también demostraba que el ADN de E. coli es circular. Se trata se la primera evidencia citológica (mediante observación al microscopio) de la circularidad del cromosoma bacteriano, ya que mediante técnicas de construcción de mapas de conjugación, ya se había demostrado previamente por Jacob y Wollman que el ADN bacteriano tenía un mapa circular.
El experimento que realizó Cairns consistió en mantener un cultivo de E. coli creciendo durante dos generaciones sucesivas en un medio que contenía Timidina tritiada (TH3), es decir, utilizaron un nucleótido (la Timina) marcado con un isótopo radiactivo (tritio, H3). Por tanto, cuando las bacterias sintetizaban su ADN empleaban dicho nucleótido marcado. Además, Cairns desarrolló un sistema para extraer el ADN de E. coli sin romperlo (intacto) y extenderlo sobre un portaobjetos para posteriormente realizar una autorradiografía, revelarla y observar los resultados al microscopio. Para realizar la autorradiografía, empleaba una emulsión fotográfica que colocaba en contacto directo con la preparación, de forma que en aquel lugar de la preparación en que existía TH3, las partículas b del tritio impresionaban la emulsión fotográfica y al revelarla aparecía una macha o punto en ese lugar. Las autorradiografías correspondientes a la primera generación de replicación presentaban imágenes de puntos formando un círculo. En las autorradiografías correspondientes a la segunda generación de replicación se observaban imágenes de puntos en forma de la letra griega q pero que mostraban una región del interior con doble cantidad de puntos.
4.2. Replicación del DNA en eucariontes.
Es similar a la de los procariontes, es decir, semiconservativa y bidireccional. Existe una hebra conductora que sintetiza de manera continua y la retardada de forma discontinua con fragmentos de Okazaki.
¿Que son los fragmentos de Okazaki?
Se conoce como fragmentos de Okazaki a los fragmentos de ADN que son el resultado de la síntesis de ADN en la hebra discontinua. Éstos se sintetizan en dirección 5’→ 3’ pero discontinuamente; después de la eliminación de los cebadores (RNA), se unen mediante la ADN ligasa.
Sin embargo, la replicación en eucariotas presenta ciertas peculiaridades;
El ADN de los eucariontes está fuertemente asociado a los octámeros de histonas, en forma de nucleosomas, por lo que además de replicarse el ADN, deben duplicarse también las histonas. Al parecer, tanto los nuevos nucleosomas como los antiguos se reparten de manera aleatoria entre las dos nuevas hebras hijas: en la retardada y en la conductora.
La longitud del ADN de un cromosoma eucariótico es mucho mayor que el ADN bacteriano, de ahí que no haya un único origen de replicación. Para que el proceso sea más rápido, existen numerosas burbujas de replicación a lo largo de cada cromosoma.
Veamos ahora como se lleva acabo el proceso;
1._ Las cadenas de ADN están unidas por puentes de hidrógeno, que debemos romper para facilitar la separación de las cadenas para ser copiadas, esta separación la lleva a cabo las enzimas helicasas.
2._ Como el desenrollamiento de la doble hélice da lugar a superenrollamientos en el resto de la molécula, capaces de detener el proceso, se hace preciso la presencia de la enzima topoisomerasa I que eliminen las tensiones en la fibra.
3._ A continuación, para evitar que las dos hebras vuelvan a reunirse y formar los puentes de hidrógeno se colocan unas proteínas llamadas SSB (Single-Strand DNA Binding proteins), que estabilizan las cadenas sencillas.
4._ Como ninguna ADN-polimerasa puede actuar sin cebador, interviene primero una ARN polimerasa (primasa) que si lo puede hacer, sintetiza un corto fragmento de ARN de unos 10 nucleótidos denominado primer que actúa como cebador.
5._ Después interviene la ADN polimerasa III, que a partir de este cebador comienza a sintetizar en dirección 5’,3’ una hebra de ADN partir de nucleótidos trifosfato. La energía necesaria para el proceso es aportada por los propios nucleótidos que pierden dos de sus fósforos. Esta nueva hebra se sintetiza en el sentido que se abre la horquilla de replicación, es de crecimiento continuo y se denomina hebra conductora.
6._ Sobre la otra hebra (hebra discontinua o retardada) la ARN polimerasa sintetiza unos 40 nucleótidos de ARN en un punto que dista unos 1.000 nucleótidos de la señal de iniciación. A partir de ellos la ADN polimerasa III sintetiza unos 1.000 nucleótidos de ADN, formándose un fragmento de Okazaki. Este proceso se va repitiendo a medida que se van separando las dos hebras patrón.
7._ A continuación interviene la ADN polimerasa I, rellena los huecos con nucleótidos de ADN.
8._ Finalmente la ADN ligasa unirá los dos extremos, tanto en la cadena continua como los sucesivos fragmentos de Okazaki que se van formando en la cadena discontinua.
No hay comentarios:
Publicar un comentario