4.3. Control de la replicación
El proceso resultante de la duplicación de ADN se conoce como división celular, la cual se ha estudiado a nivel citológico estableciéndose ciertas pautas cubiertas por lo que se conoce como ciclo celular.
El ciclo celular es un conjunto ordenado de sucesos que conducen al crecimiento de la célula y la división en dos células hijas. Las células que no están en división no se considera que estén en el ciclo celular. Las etapas, mostradas a la derecha, son G1-S-G2 y M.
Fase G1: Es la primera fase del ciclo celular, en la que existe crecimiento celular con síntesis de proteínas y de ARN. Es el período que trascurre entre el fin de una mitosis y el inicio de la síntesis de ADN. Tiene una duración de entre 6 y 12 horas, y durante este tiempo la célula duplica su tamaño y masa debido a la continua síntesis de todos sus componentes, como resultado de la expresión de los genes que codifican las proteínas responsables de su fenotipo particular.
Fase S: Es la segunda fase del ciclo, en la que se produce la replicación o síntesis del ADN, como resultado cada cromosoma se duplica y queda formado por dos cromáticas idénticas. Con la duplicación del ADN, el núcleo contiene el doble de proteínas nucleares y de ADN que al principio. Tiene una duración de unos 6-8 horas.
Fase G2: Es la tercera fase de crecimiento del ciclo celular en la que continúa la síntesis de proteínas y ARN. Al final de este período se observa al microscopio cambios en la estructura celular, que indican el principio de la división celular. Tiene una duración entre 3 y 4 horas. Termina cuando la cromatina empieza a condensarse al inicio de la mitosis.
Fase M: Es la división celular en la que una célula progenitora se divide en dos células hijas idénticas. Esta fase incluye la mitosis, a su vez dividida en: profase, metafase, anafase, telofase; y la citocinesis, que se inicia ya en la telofase mitótica.
Se cree que muchos tumores son el resultado de una multitud de pasos, de los que una alteración mutagénica no reparada del ADN podría ser el primer paso. Las alteraciones resultantes hacen que las células inicien un proceso de proliferación descontrolada e invadan tejidos normales. El desarrollo de un tumor maligno requiere de muchas transformaciones genéticas. La alteración genética progresa, reduciendo cada vez más la capacidad de respuesta de las células al mecanismo normal regulador del ciclo.
4.4 Replicación in vitro del ADN (PCR)
es una técnica de biología molecular desarrollada en 1986 por Kary Mullis,[] cuyo objetivo es obtener un gran número de copias de un fragmento de ADN particular, partiendo de un mínimo; en teoría basta partir de una única copia de ese fragmento original, o molde.
Pasos de la PCR.
Desnaturalización
En primer lugar, se desnaturaliza el ADN (se separan las dos hebras de las cuales está constituido). Este paso puede realizarse de diferentes modos, siendo el calentamiento (94-95 °C) de la muestra la forma más habitual.
Alineamiento o unión del cebador
A continuación se producirá la hibridación del cebador, es decir, el cebador se unirá a su secuencia complementaria en el ADN molde. Para ello es necesario bajar la temperatura a 40-68 °C.
Extensión o elongación de la cadena
Actúa la ADN polimerasa, tomando el ADN molde para sintetizar la cadena complementaria y partiendo del cebador como soporte inicial necesario para la síntesis de nuevo ADN. La polimerasa sintetiza una nueva hebra de ADN complementaria a la hebra molde añadiendo los dNTP complementarios en dirección 5'→ 3'.
4.4.1 Secuenciación del ADN
Una secuencia de ADN o secuencia genética es una sucesión de letras representando la estructura primaria de una molécula real o hipotética de ADN o banda, con la capacidad de transportar información. Una sucesión de cualquier número de nucleótidos mayor a cuatro es pasible de llamarse una secuencia. En relación a su función biológica, que puede depender del contexto, una secuencia puede tener sentido o antisentido, y ser tanto codificante o no codificante. Las secuencias de ADN pueden contener "ADN no codificante."
En algunos casos especiales, las letras seguidas de A, T, C, y G se presentan en una secuencia. Esas letras representan ambiguedad. De todas las moléculas muestreadas, hay más de una clase de nucleótidos en esa posición. Las reglas de la Unión Internacional de Química Pura y Aplicada (IUPAC) son las que siguen:
A = adenina
C = citosina
G = guanina
T = timina
R = G A (purina)
Y = T C (pirimidina)
K = G T (keto)
M = A C (amino)
S = G C (enlaces fuertes)
W = A T (enlaces débiles)
B = G T C (todos y A)
D = G A T (todos y C)
H = A C T (todos y G)
V = G C A (todos y T)
N = A G C T (cualquiera)
No hay comentarios:
Publicar un comentario